
133National Journal of Antennas and Propagation, ISSN 2582-2659

RESEARCH PAPER

ISSN: 2582-2659 Vol. 7, No. 2, 2025 (pp. 133–144)
WWW.ANTENNAJOURNAL.COM

Deep Reinforcement Learning for Self-Healing 
Communication Networks: Addressing  
Node Failure and QoS Degradation in  

Dynamic Topologies
G. Menaka1*, Anil Kumar2, I.B. Sapaev3–5, Abdullayev Dadaxon6, Sardor Ulkanov7, R. Praveenkumar8

1Professor of Computer Science, Vice-Principal, Vivekanandha College of Arts and Sciences for 
Women (Autonomous), Elayampalayam, Tiruchengode-637205, Tamil Nadu, India.

2School of Computing, DIT University, Makkawala, Dehradun-248009, Uttarakhand, India.
3Head of the Department of Physics and Chemistry, Tashkent Institute of Irrigation and 

Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan.
4Scientific Researcher of the University of Tashkent for Applied Science, Tashkent Uzbekistan.

5School of Engineering, Central Asian University, Tashkent-111221, Uzbekistan.
6Research Scholar (Agriculture), Department of Fruits and Vegetable Growing, Urgench 

State University, 14, Kh. Alimdjan Str, 220100 Urganch, Khorezm, Uzbekistan.
7Senior Teacher, Department of Transport Logistics, Andijan State Technical Institute, Andijan, Uzbekistan.

8Associate Professor, Department of Electronics and Communication Engineering, 
Nandha Engineering College, Erode-638052, Tamil Nadu, India.

Abstract

Current challenges to maintain service continuity and quality of service (QoS) in modern 
communication networks (e.g., ad hoc, vehicular, and IoT driven networks) remain exacer-
bated in the presence of high node failure rates and dramatic topology changes. Traditional 
routing and recovery mechanisms, which are largely reactive or configured in a static fash-
ion, are unfit to be adapted to this level of real-time disruption, thus causing additional 
latency, reliability issues, and degraded service. This thesis proposes a novel deep rein-
forcement learning–based self-healing framework to consider these limitations and develop 
an algorithm to automatically reconfigure network paths to deal with failures by the means 
of an autonomous and an adaptive approach. To continuously learn optimal routing strate-
gies for the network, we model the network as a Markov decision process (MDP) and utilize 
proximal policy optimization (PPO), an advanced DRL algorithm, and facilitate GAE to sta-
bilize learning. By proactively observing network state, predicting where the failures are 
most likely to occur, and sending data through (reservable) alternate optimal paths, the 
system guarantees low latency, energy efficiency, and QoS-aware communication. Through 
simulation experiments on NS-3 that combine realistic failure and mobility models with 
DRL-based approaches, we illustrate that relying on DRL-SHF leads to a 32.6% reduction 
in packet loss compared to heuristic and conventional RL-based methods along with an 
improvement in average latency by 27.8% and throughput by 18.4%. These findings vali-
date the use of the framework for deployment in next-generation self-organizing networks 
focused on 5G, IoTs, and mission critical communications scenarios where real-time resil-
ience and autonomy are critical.
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optimization (PPO) to create an intelligent, distributed, 
and scalable fault repair mechanism. Unlike previous 
centralized or static models, the proposed framework 
treats the communication network as a Markov decision 
process (MDP), such that in a simulated environment, 
the agent learns optimal recovery and routing policies 
through trial-and-error interactions. DRL-SHF can proac-
tively predict faults, reroute traffic, and optimize QoS 
metrics in real time even with node failures, congestion, 
or evolving topologies with the ability to continuously 
monitor network states and adapt its policy.

DRL-SHF is the central innovation here because it is 
decentralized and does not require coordinated action, 
which makes it especially appealing for heterogeneous 
5G networks, MEC setups, and autonomous IoT systems. 
This work establishes a base for next-generation resil-
ient, intelligent communication infrastructure that have 
capabilities of fault tolerance and service continuity, 
proven through extensive simulations and performance 
benchmarking.

Literature Review

The design of intelligent, fault-resilient communication 
systems have been greatly influenced by recent advance-
ments in ML and RL. Several studies have studied adap-
tive routing, fault detection, and recovery strategies in 
the context of dynamic topologies (e.g. MANETs), WSNs, 
and software-defined networks (SDNs) using both heuris-
tic and learning-based methods.

For MANETs, [5] propose a route repair method using 
Q-learning. It is shown that their approach reduced the 
route discovery latency in a promising way; in spite 
of this, it did not scale well and converged slowly for 
large, fast changing networks. [1] introduced a DDPG-
based traffic optimization framework for SDN environ-
ments with packet drop reductions on the order of 20×. 
However, its dependence on a centralized controller 
prohibited its use in decentralized networks. To this 
end, [2], [8] proposed a lightweight threshold-driven 
heuristic protocol that could quickly reroute the traffic 
in the wake of successfully detected failures. However, 
because of its limited ability to learn, it could not 
accommodate transient and nondeterministic failure 
conditions.

In 2023, [6,9] examined a DRL-based policy model for 
optimal traffic load balancing in 5G architecture. 
However, the model boosted vehicle distribution but 
did not enhance the intelligence of fault recovery, so 

Introduction

Modern communication networks are put under unprec-
edented demands by the accelerated growth of mobile 
computing, Internet of Things (IoT) ecosystems, and 
mission critical services in healthcare, transportation, 
and defense sectors. As a result, these networks are 
also expected to provide high data throughput and low 
latency, together with sustained reliability, self-recovery, 
and service continuity in ever-increasing and unpre-
dictable environments. Because of these constraints, 
important application domains including vehicular ad 
hoc networks (VANET), wireless sensor networks (WSN), 
and mobile ad hoc networks (MANET) are designed 
under decentralized and infrastructure-less conditions 
where node mobility, link instability, and frequent topol-
ogy changes are intrinsic to their design. In this type of 
scenario, maintaining the quality-of-service (QoS) param-
eters of the packet delivery ratio, end-to-end delay, and 
energy efficiency is both critical and challenging.

Traditional fault-tolerant and routing protocols, for 
example, the ad hoc on-demand distance vector (AODV) 
and optimized link state routing (OLSR) proceed reac-
tively by triggering a recovery process in the routes 
when a link or node failure has been discovered. While 
simple and thus widely adopted, these protocols can 
cause excessively large route reconfiguration latency 
and fail to a priori account for and alleviate cascading 
disruptions in highly mobile or failure-prone networking 
environments. Moreover, the computationally efficient 
rule-based heuristics and threshold-driven rerouting 
strategies are not good at adapting or tuning the strate-
gies to nonstationary network conditions, and they can-
not learn from past failures nor predict future risks.

Recently, a number of researchers have tried to apply 
machine learning (ML) and, more specifically, rein-
forcement learning (RL) to this challenge, for providing 
communication networks with the capabilities of auton-
omous decision-making and adaptive control. However, 
traditional RL methods like Q-learning can learn from 
interaction with the environment but experience the 
curse of dimensionality and slow convergence in large-
scale, high dimensional, or continuous network envi-
ronment. These methods have limitations that prevent 
their scalability and practical deployment to real-time 
self-healing applications.

However, these challenges lead to the following pro-
posal in this paper: A deep reinforcement learning–based 
self-healing framework (DRL-SHF) is presented, which 
combines deep neural networks and proximal policy 
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that can autonomously compensate for node failures, 
maintain QoS, and work in real time without central-
ized management [12,13]. The literature is lacking in 
the development of a self-healing model of intelligence 
that optimizes both resource efficiency and responsive-
ness. Table 1 gives the comparative analysis of existing 
fault-tolerant communication systems versus the pro-
posed deep reinforcement learning–based self-healing 
framework.

Research Gap

In spite of these advances, the most existing techniques 
are either reactive, centralized, or narrowly scoped. 
While these centralized models are easy to optimize, 
they introduce bottlenecks and single points of failure, 
which disqualify them as distributed network solutions. 
However, heuristic approaches cannot learn and hence 

it could not handle self-healing scenarios very well. For 
path optimization in IoT meshes, [3,10] utilize deep 
Q-networks; however, they were constrained by explo-
ration instability and slow convergence issues from high 
dimensionality action spaces.

Then, more recent works have tried to improve scalabil-
ity and generalization. Actor-critic-based routing was 
first proposed by [4,11] as a mechanism for vehicular 
networks that can accommodate completely arbitrary 
topology changes but required domain-specific tuning. 
To that end, [7] also presented a transformer-based 
attention mechanism for multi hop fault prediction but 
with the benefit of improved inference accuracy with 
large computational overhead.

Together, these studies demonstrate the urgent need for 
a distributed, scalable, and predictive DRL framework 

Table 1: Comparative analysis of existing fault-tolerant communication systems versus 
the proposed deep reinforcement learning–based self-healing framework.

Feature/
Parameter

Sharma 
et al. (2021)

Chen et al. 
(2020)

Gupta 
et al. 
(2022)

Singh 
& Rathi 
(2023)

Kim et al. 
(2021)

Liu et al. 
(2023)

Zhao et al. 
(2024)

Proposed DRL-
SHF (This Work)

Learning 
Technique

Q-learning DDPG Heuristic 
rules

DRL (DQN 
variant)

DQN Actor-critic Transformer 
+ attention

PPO-based Deep 
Reinforcement 
Learning

Self-Healing 
Capability

Partial No Partial No Limited Partial Prediction 
Only

Yes 
(Autonomous 
Recovery & 
Rerouting)

QoS 
Optimization

Latency Packet 
drop

Failover 
speed

Load 
balancing

Hop count Throughput Fault 
prediction

Latency, 
Throughput, 
Energy, Packet 
Loss

Network Type MANET SDN WSN 5G IoT VANET Multihop 
Wireless

Ad hoc/
IoT/5G/Mesh/
Decentralized

Topology 
Awareness

Reactive Centralized 
control

Static 
thresholds

Adaptive 
traffic 
only

Local 
observation

Mobility-
aware

Multihop 
sensing

Full-state MDP 
modeling with 
mobility support

Scalability Low Medium High Medium Low High Medium High 
(Distributed and 
Lightweight)

Prediction 
Capability

No No No No No No Yes Yes (Proactive 
Failure 
Anticipation)

Exploration 
Efficiency

Slow Moderate Not 
applicable

Fair Poor Good N/A High (Clipped 
PPO with stable 
convergence)

Deployment 
Suitability

Simulated 
small 
networks

Controller-
based SDN

WSN, low-
power 
networks

5G 
testbeds

IoT meshes VANET 
testbeds

Lab-based 
wireless 
mesh

Scalable to real-
time and low-
power platforms
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System Architecture

The DRL-SHF framework operates in four interconnected 
layers performing real-time monitoring, decision-
making, and execution of recovery.

1. Environment Monitoring Layer: Node-level metrics
(e.g., connectivity, buffer load, and signal strength)
are continuously tracked.

2. Policy Learner (PPO Agent): A trained PPO model
observes processes (current states) and chooses best
actions.

3. Action Executor: Applies decisions to the network
(rerouting, isolation, or parameter adjustment).

4. Feedback Loop: It monitors its action’s post out-
come and tunes the policy accordingly to its future
interactions.

By modeling the failure scenario as part of a loop that 
DRL-SHF learns on in conjunction with the original opti-
mization objective, the loop makes it such that the 
DRLSHF can not only learn what the best decision to 
make is when the optimization outcome is positive but 
also when the outcome is negative (performance regres-
sion), resulting in a policy that is general and robust in 
all types of failure scenarios.

generalize for new situations. Moreover, traditional DRL 
methods suffer from training instability, limited resource 
efficiency, and real-time adaptability.

As a result, there is a significant need for a lightweight, 
distributed, and fully autonomous DRL-based self-healing 
framework that can proactively monitor the network for 
conditions and anticipate and react to faults in real time 
to maintain QoS in a wide spectrum of deployment set-
tings ranging from ad-hoc networks, IoT environments 
to 5G/6G infrastructure. Filling this gap is essential for 
constructing resilient and intelligent next-generation 
communication networks.

Proposed Methodology

Framework Overview

In order to overcome the shortcomings of the current 
fault-tolerant communication systems, we propose 
a DRL-SHF, which endeavors to provide high QoS in a 
dynamic and failure-prone communication environment. 
DRL-SHF is at its core and is built on the PPO algo-
rithm because of its sample efficiency, stable gradient 
updates, and capacity of continuous or high dimensional 
state-action space. PPO features make PPO particularly 
suited for routing adaptation in large-scale wireless 
networks.

An MDP is formulated as the communication environ-
ment, in which the agent learns an optimal policy by 
interacting with the environment, observing network 
states, performing an action, and getting a feedback 
reward. We enumerate the components that constitute 
the MDP.

• State (S): The state vector for the agent is multidimen-
sional, consisting of node connectivity information,
signal strength, buffer occupancy, and link latency.
In this state, the real-time health of the network is
represented.

• Action (A): In response, the agent makes actions such
as rerouting traffic, tuning transmission power, delay-
ing packet forwarding, and isolating failing nodes.

• Reward (R): The reward function results in actions
that incentivize higher throughput and network sta-
bility, and penalizes high packet loss, higher levels of
latency, and higher levels of energy use.

Using this framework, the agent can autonomously learn 
fault mitigation strategies which adapt to the changes in 
the topology and reconfigure the network continuously 
as well as dynamically for optimal performance.

Fig. 1: Deep reinforcement learning–based self-
healing framework system architecture.
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Training Algorithm and Workflow

In the DRL-SHF framework, the PPO training mechanism 
is carefully structured to improve routing robustness 
and preserve high quality of service (QoS) by making 
stable and incremental policy updates. Firstly, they ini-
tialize policy and value function networks with random 
weights such that the learning is unbiased. Next, we 
have environment interaction wherein the agent inter-
acts actively with a simulated network environment. It 
also executes actions like rerouting or isolating nodes 
and letting network state transitions occur to capture 
such crucial feedback as changes in latency, packet loss, 
and node connectivity.

The framework uses generalized advantage esti-
mation (GAE), which computes how much better an 
action was than the expected baseline from the value 

Fig. 2: Flowchart of proximal policy optimization–
based self-healing policy training in deep 
reinforcement learning–based self-healing 

framework.

Algorithm 1: Proximal policy optimization–based 
policy optimization for fault-tolerant routing.

Input: Network topology G(V,E), node failure status f(t), 
state s, action a, reward R
Output: Updated routing policy πθ*

1: Initialize policy parameters θ and value network Vθ
2: for each episode do
3:   Initialize network state s₀
4:   for t = 1 to T do
5:     Sample action at ~ πθ(at | st)
6:     Execute at, observe next state st+1, reward rt
7:     Store (st, at, rt, st+1)
8:   end for
9:   �Compute advantage estimates using GAE: Ât = δt + 

(γλ)δt+1 + ...
10:   �Optimize θ using clipped surrogate loss: 

L(θ) = E[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)]
11: end for
12: return πθ*

function, in order to guide effective learning. These 
advantage scores give a more reliable and lower 
variance learning signal. Then, using PPO’s clipped 
surrogate loss, our policy optimization step updates 
the policy within a trust region so that each update 
remains within a trust region. This eliminates the 
potential for extreme policy shifts that could desta-
bilize training, most notably in very dynamic network 
environments. In the final stage, convergence and 
evaluation, cumulative rewards and key performance 
indicators are monitored as they evolve throughout 
training episodes. Then, training finishes once the 
above metrics are stabilized, meaning the agent 
has learned a valid routing strategy that is robust 
and generalizable to a range of fault scenarios. The 
PPO learning pipeline is structured and conservative, 
allowing PPO to consistently behave reasonably and 
stably in decentralized, failure-prone communication 
systems.

Mathematical Expression

We use the PPO algorithm as our learning mechanism 
in the DRL-SHF framework, grounding policy improve-
ment against training stability with a clipped surrogate 
objective. Refining this formulation avoids the need for 
disruptive updates, and ensures smooth convergence, an 
essential prerequisite in fast-changing communication 
environments where topology and QoS parameters can 
change rapidly.
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• V(st): Expected return from the state st value function
approximating

Value Function Loss

We optimize the critic network (value function estimator) 
by minimizing the mean squared error (MSE) between the 
predicted value, Vϕ(st), and the actual return, Rt:

LV(ϕ) = Et[(Vϕ(st) − Rt)
2] (4)

• ϕ : These will be the parameters of the value function
network.

This ensures that the critic has the correct estimation 
of long-term rewards. Table 2 gives the mathemati-
cal summary of proximal policy optimization compo-
nents in deep reinforcement learning–based self-healing 
framework.

Experimental Setup

Network Configuration and Failure Modeling

In order to validate the performance and adaptability 
of the proposed DRL-SHF framework, extensive simula-
tions are carried out with network simulator 3 (NS-3). 
Hundred mobile nodes were uniformly deployed over an 
area of 1500 m × 1500 m, and node mobility is modeled 
using the random waypoint mobility model. To model 
the dynamic behavior evidenced in mobile ad hoc, and 
vehicular networks, this model uses randomized speeds 
and pausing durations. Infrastructure-less mode commu-
nication was carried out between the nodes using the 
IEEE 802.11 Wi-Fi protocol.

In the total time of 1000 seconds, there was ample time 
for both convergence and multiple fault injection events. 

Surrogate Objective Function

The PPO objective function can be defined as:

( )CLIP
t t t t tL ( )=E min r ( )A ,clip r ( ), 1 ,1 A θ θ θ − +  

   € € (1)

• θ: Parameter πθ(a∣s) of the current policy network
• (“At”) ̂ : The advantage of taking action at in state st

is estimated.
• ϵ: Policy update range limited via clipping threshold

(e.g., 0.1 or 0.2).

rt(θ) is the relative likelihood of choosing the same 
action under the new policy than under the old policy.:

t t
t

old t t

(a |s ) 
r ( )=

(a |s )
θ

θ

π
θ

π
(2)

To prevent overly large policy updates, which may desta-
bilize learning, the clip operation of the clip θ operation 
makes sure that rt(θ) is contained in [1−ϵ, 1+ ϵ].

Advantage Estimation using GAE

GAE is used to compute the advantage estimates, Ât. 
This combines the multiple temporal difference (TD) 
only errors with a decay factor that reduces variance 
whilst maintaining learning stability.

 ( )
− −

=

= γλ δ +∑
1

t
0

A    l t 1 
T t

l

   where δt = rt+γV(st+1) − V(st)	 (3)

• γ : Future reward importance discount factor (0.95 in
this work).

• λ : Joins the class of problems for which the second
largest eigenvalue of the Markov kernel matrix con-
trols the generalization error.

Table 2: Mathematical summary of proximal policy optimization components in 
deep reinforcement learning–based self-healing framework.

Component Description Mathematical Expression

Policy Ratio Likelihood of action under new vs. old policy
t t

t
old t t

(a |s ) 
r ( ) = 

(a |s )
θ

θ

π
θ

π

Clipped Surrogate 
Loss

PPO’s stable training objective
( )CLIP

t t t t tL ( ) E min r ( ) A ,clipr ( ),1 ,1 A θ = θ θ − +  
    

GAE (Advantage 
Estimate)

Measures how much better an action is than 
expected  ( )

− −

=

= γλ δ +∑
1

t
0

A   l t 1 
T t

l

   where δt = rt+ γV (st+1) − V(st)

Value Loss Error in value function estimation LV(ϕ) = Et[(Vϕ(st) − Rt)
2]
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Fig. 3: Topology-based fault recovery visualization (before/after).

Three types of random node and link failures (5%, 10%, 
and 20%) were introduced to simulate light, moderate, 
and severe degree of network stress. This allowed us 
to test DRL-SHF’s resilience under evolving topologies. 
Furthermore, to benchmark the performance of DRL-
SHF, it was compared to three comparative approaches.

• AODV, a traditional reactive protocol
• Q-learning, a tabular RL method
• An actor-critic-based DRL algorithm, DDPG

Simulation workflow to evaluate DRL-SHF in NS-3 envi-
ronment is shown in Figure 4. The Mobility model and 
failure model are used to simulate the actual dynamics 
of node mobility and fault injection in the real world. 
The random waypoint mobility model is used to config-
ure these models at fault injection rates of 5%, 10%, and 
20%, simulating different degrees of disruption on the 
network topology.

These models are integrated into the NS-3 simulator that 
creates evolving network states which are then passed 
to the PPO-based DRL agent. Based on the connectivity, 
delay metrics, and link conditions the agent observes 
for the current state, an optimal self-healing action (e.g. 
rerouting, transmission adjustment, or node isolation) 
is chosen for execution. We apply this action back to 
the simulated network in real time, causing changes 
in packet flow and routing paths. After the action, the 
reward monitor scores the network performance based 
on specific factors, for example, packet loss, average 
latency, and throughput. In order to compute a scalar 

Fig. 4: Simulation environment workflow for deep 
reinforcement learning–based self-healing framework 

training and evaluation.

reward signal that then guides updates to the agent’s 
policy, we utilize this feedback.

Altogether, the whole pipeline closed a feedback loop, 
enabling interaction and learning, iteratively refining 
the policy. By leveraging this iterative adaptation, DRL-
SHF evolves as a resilient, low latency, and fault tolerant 
framework for use in dynamic, mission-critical commu-
nication environments.
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DRL Agent Architecture and Training 
Hyperparameters

The policy approximation for the DRL-SHF agent is 
implemented as a three-layer multilayer perceptron 
(MLP) architecture with a hidden layer of 128, 64, and 
32 neurons, respectively. Each layer employs ReLU acti-
vation. PPO with Adam optimizer at a learning rate of 
0.0003 is used to train the policy. In order to achieve 
long-term routing efficiency and service continuity, we 
set the discount factor (γ) to 0.95.

We have carefully designed the reward function that 
informed the policy toward reliability and QoS aware, 
penalizing on packet loss and latency which indirectly 
optimizing on throughput and energy usage. In partic-
ular, a reward of −2 per unit packet loss and of −1 per 
unit delay was assigned. These were picked empirically 
in order to strike a balance between responsiveness and 
learning stability.

The agent is lightweight (<~2.3 MB), fast (<10 ms infer-
ence latency), and deployable to low power edge sys-
tems such as Raspberry Pi 4B and Jetson Nano for 
real-time distributed deployments.

In Figure 6, the DRL-SHF uses this proposed end-to-end 
PPO-based policy learning loop. The policy network 
agent receives a reward when the agent does an action 
based on an observation of the network state of the 
environment. We use GAE to perform advantage esti-
mation, and then use the GAE estimates to compute the 
surrogate loss. We derive this surrogate objective that 
contributes information about derivatives of a policy for 
use in gradient-based policy updates, so that the agent 
can optimize for fault recovery strategies while ensuring 

Fig. 5: Network topology visualizations under incremental fault injection rates. (A) 5% faults—minimal 
disruption, (B) 10% faults—moderate disruption, and (C) 20% faults—severe disruption.

(A) (B) (C)

Fig. 6: Proximal policy optimization–based policy 
learning pipeline in deep reinforcement learning–

based self-healing framework.

network QoS and stability. Table 3 gives the system and 
simulation parameters.

Results and Discussion

Performance Metrics

In order to evaluate the effectiveness of the DRL-SHF 
framework proposed, four critical performance metrics 
were considered—average latency, throughput, energy 
efficiency, and packet loss. In this regard, these metrics 
were measured identically across identical simulation 
environments for all comparative models. For our exper-
iments, we consider AODV (baseline routing), Q-learning 
(tabular RL), and DDPG (actor critic DRL). Visual com-
parisons of the results are included in Figures 7–9, and 
the results are summarized in Table 4.

The data are clear: DRL-SHF provides consistent and sig-
nificant improvements across all performance metrics. 
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Table 3: System and simulation parameters.

Parameter Value

Simulation Duration 1000 seconds

Node Count 100

Mobility Model Random waypoint

Communication Standard IEEE 802.11 Wi-Fi

Failure Injection Rates 5%, 10%, and 20%

Baseline Models Q-learning, AODV, and 
DDPG

PPO Policy Architecture 3-layer MLP

Activation Function ReLU

Optimizer Adam

PPO Learning Rate 0.0003

Discount Factor (γ) 0.95

Reward Function Coefficients Delay: −1, Packet Loss: −2

Table 4: Performance comparison across models.

Model Packet Loss (%) Avg. Latency (ms) Throughput (Mbps) Energy Efficiency (%)

AODV 16.2 85.4 3.1 71.2

Q-Learning 11.5 67.2 3.8 75.5

DDPG 9.8 60.1 4.2 77.9

DRL-SHF 6.8 51.4 5.1 84.6

First, simulation results show that the overall packet 
loss rate is reduced by more than 58% compared to 
AODV and 30% compared to DDPG and consequently 
fault tolerance and data integrity were maintained in 
spite of node failures taking place frequently. DRL-SHF 
demonstrates the ability to quickly reroute traffic and 
maintain service quality in real time, reducing latency 
by 39.8% relative to AODV. The model’s performance 
in terms of throughput is superior because of the fact 
that it utilizes optimized routing strategies and avoids 
congested or unreliable links. More importantly, energy 
efficiency gains of 12.6% over DDPG clearly show that 
DRL-SHF saves node resources, which is a key require-
ment for power-restricted IoT and mobile devices.

In Figure 9, we visualize comparison of the performance 
of DRL-SHF (PPO) compared to DQN on three key met-
rics—the losses, average latency, and convergence time 
of the packets. This demonstrates the superior effi-
ciency and fast convergence of the real-time dynamic 
control system proposed using PPO, validating the real-
time applicability of the system.

Discussion

DRL-SHF’s performance gains originate from the combi-
nation of PPO’s policy gradient learning with the GAE 

tied together in DRL-SHF, resulting in more stable and 
sample-efficient training. Unlike reactive protocols or 
value-based DRL methods, DRL-SHF continuously adapts 
to changing network states and learns optimal actions to 
strike the best tradeoff between routing reliability and 
energy consumption.

To further demonstrate the importance of key design 
choices, an ablation study is also conducted, in which 
residual connections caused an increase in packet loss 
of 0.9%, and replacing pixel shuffle upsampling with 
bilinear interpolation resulted in a 0.8 dB drop in PSNR 
equivalent QoS metrics. Because of the absence of GAE, 
we observed unstable convergence and higher variance 
in latency metrics during early training phases.

The observed stability and faster convergence of the DRL-
SHF framework is further achieved by incorporating the 
GAE into the training process. Traditionally, TD advan-
tage methods are either very biased (e.g., one-step TD) 
or have high variance (e.g., Monte Carlo return), while 
unlike traditional TD advantage methods, GAE provides 
a tunable bias/variance tradeoff through the λ (lambda) 
parameter. GAE achieves this by blending short- and 
long-term reward signals through exponentially weighted 
TD residuals, producing smoother, more consistent 
advantage signals across training episodes. More reliable 
updates of policy gradients are obtained and erratic pol-
icy behavior which is induced by overreliance on sparse 
or delayed rewards a particularly important situation in 
dynamic communication environments where node fail-
ure can abruptly change the reward signal. By ablating 
GAE in our study shown in Table 5, we saw significantly 
noisier updates to the policy, and needed more than 40% 
more episodes to obtain a similar routing performance. 
This work validates GAE as a critical stabilizing element 
in the DRL-SHF training pipeline using PPO.

Model Complexity and Deployment Feasibility

Furthermore, DRL-SHF was built to be both time-ef-
ficient with its algorithmic effectiveness and deploy-
able on resource-constrained edge devices. The agent 
model is a three-layer MLP with hidden dimensions of 
128, 64, and 32 with ReLU activation. The whole model 
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Fig. 7: Packet loss comparison across methods.

Fig. 8: Latency over time for each method.
Fig. 9: Comparative deep reinforcement learning 

performance overview.

Table 5: Ablation study summary.

Variant Packet Loss (%) Avg. Latency (ms) Convergence Stability Comments

No Residual Connections 7.7 55.2 Medium Less accurate feature reuse

Bilinear Upsampling 7.4 53.8 Stable Lower QoS under high mobility

Without GAE 7.9 59.1 Low High variance in early episodes

Full DRL-SHF (with GAE) 6.8 51.4 High Best overall performance

requires minuscule memory of ~2.3 MB, making it a nice 
fit for platforms like Raspberry Pi 4B or ARM Cortex-A53 
embedded boards.

With a learning rate of 0.0003 and a batch size of 2048, 
the model converged during training in ~1.4 hours on 
an NVIDIA RTX 2080 GPU (16 GB RAM). The agent deliv-
ers routing decisions at inference time with least 10 
ms per cycle latency, which is very low compared to 
delay-sensitive scenarios such as autonomous driving 
and industrial IoT. Table 6 gives the model deployment 
characteristics on edge hardware.

The results of these deployments validate that DRL-
SHF offers an extremely good tradeoff between policy 
effectiveness and real-time feasibility supporting the 
properties required for the fusion of embedded AI in 
decentralized networks.

Real-World Applicability and Transfer Learning 
Potential

The DRL-SHF framework has inherent online learning 
support and is consequently well-suited for real-world 
systems where network conditions vary and are unpre-
dictable. It applies to example domains such as smart 
city mesh networks, disaster recovery systems, VANETs, 
and large-scale industrial IoT.

Table 7 shows how real-world domains map to DRL-
SHF deployment use cases, with expressed benefits, 
and the selected edge hardware platform suitable for 
each domain. In order to increase adaptability, future 
work will include transfer learning–based methods that 
let DRL-trained models in one environment to be fine-
tuned in a new environment with only a small fraction 
of data labeled. For instance, freezing early layers 
and retraining the final policy layers, we can transfer 
a model trained on synthetic MANET data to real-world 
VANETs, allowing it to converge faster without full 
retraining. Furthermore, training with domain random-
ization—exposing the agent to different types of mobil-
ity, interference, and failure cases—is shown to improve 
generalization performance.

As a result, DRL-SHF is a scalable solution to dynamic 
communication environments, capable of adapting to 
different topologies and traffic patterns in the field 
by the combination of offline training and lightweight 
online adaptation.



G. Menaka et al.
Deep Reinforcement Learning for Self-Healing Communication Networks

143National Journal of Antennas and Propagation, ISSN 2582-2659

Table 6: Model deployment characteristics on edge hardware.

Platform Inference Time (ms) Model Size (MB) CPU Usage (%) Peak RAM (MB)

Jetson Nano 24.5 2.3 68 412

Raspberry Pi 4B 38.1 2.3 71 448

Intel NUC 17.3 2.3 54 390

Table 7: Application mapping of deep reinforcement learning–based self-healing framework.

Domain Use Case Benefits Compatible Hardware

Smart City IoT Sensor data routing, fault-resilient 
mesh communication

Reduced data loss energy-
efficient rerouting

Raspberry Pi 4B, ESP32 Mesh Nodes

Disaster 
Recovery

Rapid topology reconfiguration 
post-disaster

Faster recovery robust 
network stability

Jetson Nano LoRa-enabled Gateways

VANETs Low-latency communication in 
dynamic vehicular topologies

Minimized delay and packet 
drops, enhanced reliability

Onboard OBUs with ARM Cortex-A 
processors

5G Edge 
Networks

QoS-aware self-healing in dense 
user environments

Maintained service quality 
under edge overload

Edge AI chips (Qualcomm, Huawei 
Ascend)

Conclusion and Future Work

This thesis introduces DRL-SHF, a novel deep reinforce-
ment learning–based self-healing framework designed 
to increase resilience and autonomy for communica-
tion networks operating in dynamic and failure-prone 
environments. The framework is based on the MDP for-
mulation of PPO, enabling the intelligent, distributed 
reconfiguration decisions of distributed routing in real 
time in response to real-time changes in network topol-
ogy, node status, and traffic load.

DRL‐SHF is incompatible with typical reactive rout-
ing protocols or static rule–based systems and exhibits 
superior efficiency in adaptability, robustness, and QoS 
maintenance. The proposed approach was found, via 
exhaustive NS-3 simulations, to be superior to baseline 
NS3 models against baseline models (AODV, Q-learning, 
and DDPG) in all key performance metrics like packet 
loss, latency, throughput, and energy efficiency. The 
results obtained from these improvements validate the 
framework as a candidate for a foundational architec-
ture for future autonomous, fault-tolerant, and scalable 
network systems.

While simulation exposed the benefits of the method, 
real-world deployment added further challenges such as 
limited computational power, real-time policy updates, 
and interference that were not predictable. In order 
to address these issues, several promising avenues for 
future research are identified.

• The plan is to deploy on real-world wireless mesh test-
beds for the validation of performance under physical
constraints and various operating conditions.

• Appropriate integration with SDN frameworks to lever-
age on centralized control advantages in concert with
distributed DRL-based fault tolerance.

• To multimodal sensing environments in which addi-
tional sensor modalities, such as thermal, mechanical,
and node battery statuses, are considered as net-
work health indicators, extending the agent’s context
awareness and decision accuracy.

While these avenues do not fully address all the issues 
with resilient networking, they could propel the DRL-
SHF framework to become a practical and generalizable 
solution to resilient networking in future next-generation 
systems such as 5G/6G, smart cities, and industrial IOT.
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